Theoretical Studies on CH₃SiH₃+H→CH₃SiH₂+H₂ Reaction with the Variational Transitional State Theory

Qing Zhu ZHANG, Chuan Pu LIU*, Shao Kun WANG, Xin Ji XIE, Miao ZHANG, Yue Shu GU

School of Chemistry, State Key Laboratory of Crystal Materials, Shandong University
Jinan 250100

Abstract: In this paper, the abstraction reaction of CH_3SiH_3 with H has been studied by using the "direct dynamics" method of variational transition-state theory, which is based on the information on geometries, frequencies and energies calculated by *ab initio* along the minimum energy path. The rate constants of the title reaction were calculated for the range of temperature 298-1700 K. The rate constants calculated match well with the experimental values.

Keywords: Variational transition state, tunneling effect, rate constants.

Introduction

The abstraction reaction between CH_3SiH_3 and H plays an important role in silicon-containing species and has been the subject of many experimental studies¹⁻⁶, but it has not been studied with the variational transition state theory. In this paper, the dynamics of the title reaction is investigated by using POLYRATE7.8 program obtained from Truhlar⁷. The theoretical rate constants for the title reaction are obtained over a wide range of temperature 298-1700 K.

Theory and Methods

The generalized transition-state (GTS) theory rate constant is given by⁸

$$k^{GT}(T,s) = \frac{\sigma}{\beta h} \frac{Q^{GT}(T,s)}{\Phi^{R}(T)} \exp[-\beta V_{MEP}(s)]$$
 (1)

where T is the temperature; s is the distance of GTS along the minimum energy path (MEP); σ is the symmetry factor⁹ accounting for the possibility of two or more symmetry-related reaction paths; β is $(k_BT)^{-1}$; k_B is Boltzmann's constant; h is the Planck's constant; $\Phi^R(T)$ is the partition function per unit volume of the reactant; $V_{MEP}(s)$ is the classical energy along MEP with its overall zero of energy at the reactant and $Q^{GT}(T,s)$ is the partition function of GTS at s with the local zero of energy at $V_{MEP}(s)$. The canonical variational theory (CVT) rate constant k^{CVT} can be obtained by

variationally minimizing the generalized transition-state theory rate constant $k^{GT}(T,s)$ with respect to the position s of the GTS along the reaction path,

$$k^{CVT}(T) = k^{GT}(T, s_*^{CVT}) = \min_{s} k^{GT}(T, s)$$
 (2)

The rate constants for the title reaction in the range of temperature 298-1700K were calculated by using the "direct dynamics" method of variational transition-state theory, which is based on the electronic structure data on geometries, frequencies and energies calculated by *ab initio* along MEP.

In the calculation, the Gaussian-94 and the POLYRATE programs were employed, the former for calculating the electronic structure data, the latter for calculating the rate constant.

Results and Discussion

The geometries and properties of various critical points along reaction path

The transition state for the title reaction and its imaginary vibrational mode are shown in **Figure 1**. This imaginary vibrational mode indicades that the transition state is on the reaction path and points at the products. **Table 1** shows the optimized geometries, frequencies (scaled by 0.93) and the energies for all species. The geometry optimizations and frequencies were performed at the UMP2(FULL)/6-311G(d,p) level. The energy was important to the rate constant, so in this paper the energy calculations were done at the high level QCISD(T)/6-311G(d,p).

Figure 1 Transition state and its imaginary vibrational mode

The data in **Table 1** shows that the optimized geometries for the reactant and product are in good agreement with expertmental values. By comparing the geometries of reactant, product and transition state in **Table 1**, it can be seen that the SiH¹ bond is elongated from 147.70 pm in reactant to 163.19 pm in transition state, the H¹H² bond is shortened from 105.39 pm in transition state to 73.81 pm in product. The transition state has C_S symmetry.

The **Table 2** gives the computational rate constants in the range of tempreture 298-1700K. In the table, k^{\pm} and k^{CVT} denote the conventional transition-state theory (TST) rate constant and the canonical variational theory (CVT) rate constant, and the rate constants k^{CVT} corrected by MEPSAG (minimum energy path semiclassical adiabatic ground-state) and SCSAG (small curvature semiclassical adiabatic ground-state) transmission coeffcient are expressed as $k^{CVT/MEPSAG}$ and $k^{CVT/SCSAG}$, respectively.

 $\textbf{Table 1} \ \textbf{The geometries , scaled frequencies and energies of various critical points along reaction path } \\$

Properties		Reactant	Transition stat	te Product	Expt. 10	_
	C-Si	187.43	187.42	187.95	187.5	
Bond Length	Si-H ¹	147.70	163.19	/	147.7	
/ pm	H^1-H^2	/	105.39	73.81	1.,,,	
/ piii	Si-H ³	147.70	147.74	147.82		
	C-H ⁵	109.27	109.33	109.70		
	∠SiH ¹ H ²	/	177.39	/		
	∠Sin n ∠H¹SiH³	,		,		
		108.52	107.91	/		
Bond Angle	$\angle H^3SiH^4$	108.52	109.41	109.70		
/(°)	$\angle CSiH^3$	110.41	111.09	111.45	110-112	
	$\angle H^5CH^6$	107.90	107.91	107.99	l.	
,		2963	2965	H ₂ 4219	1	
		2963	2959	CH ₃ SiH ₂ 2968		
		2874	2872	2953		
			2153	2869		
Frequency/cm ⁻¹		2153	2143	2148		
		2153	1372	2131		
		1374	1372	1370		
		1374	1226	1370		
		1228	1062	1222		
		937	981	909		
		937	965	845		
		920	915	816		
		845	844	666		
		845	836	549		
		670	670	495		
		487	562	171		
		487	499			
		183	301			
			167			
			142			
			1486i			
Energy/hartre	e CH ₃ SiH ₃	-330.6283	-331.1176	CH_3SiH_2	-329.9787	
	Н	-0.4998		H_2	-1.1683	

The reaction rate constants

Table 2 Reaction rate constants (k/cm³·molcule⁻¹·s⁻¹)

T/	K	\boldsymbol{k}^{\neq}	k ^{CVT}	k ^{CVT/MEPSAG}	k ^{CVT/SCSAG}	$k_{EXPT}/10^{-13*}$
29	8	4.27E-15	4.83E-17	1.92E-13	3.99E-13	3.9 ± 0.2^{1}
80	0	4.80E-12	7.24E-13	3.71E-12	5.24E-12	
90	0	8.37E-12	1.49E-12	5.58E-12	7.51E-12	
10	00	1.33E-11	2.72E-12	8.04E-12	1.04E-11	
12	00	2.81E-11	1.70E-11	3.81E-11	4.64E-11	
15	00	6.35E-11	4.03E-11	6.81E-11	7.82E-11	
17	00	9.64E-11	6.26E-11	9.40E-11	1.05E-10	

^{*}other experimental rate constants: 4.0 ± 0.1^2 (291K), 12.6 ± 3.8^3 (298K), 11.5 ± 2.0^4 (298K), 3.8 ± 0.2^5 (298K), 6.3 ± 1.2^6 (305K)

By comparing the data in $Table\ 2$, it can be seen that the tunneling effect is very obvious at room tempreture, therefore, in calculating rate constants the tunneling effect must be

considered. At 298K, $k^{CVT/SCSAG}{=}3.99{\times}10^{{\cdot}13}$, which is in good agreement with the expremental values $(4.0\pm0.1)\times10^{{\cdot}13}, (3.8\pm0.2)\times10^{{\cdot}13}$ and $(3.9\pm0.2)\times10^{{\cdot}13}.By$ fitting the rate constants $k^{CVT/SCSAG}$ in **Table 2** to the Arrhenius equation , the following rate-tempreature relation formula can be obtained: $k^{CVT/SCSAG} {=} 10^{8.24} exp^{({-}16.34kJ/mol/RT)}$

$$k^{CVT/SCSAG} = 10^{8.24} exp^{(-16.34kJ/mol/RT)}$$

References

- N. L. Arthur, L. A. Miles, Chem. Phys. Letters 1998, 282, 192.
- J. H. Hong, Ph. D. Thesis, University of Detroit, 1972.
- J. A. Cowfer, K. P. Lynch, J. V. Michael, J. Phys. Chem. , 1975, 79, 1139.
- K. Worsdorfer, B. Reimann, P. Potzinger, Z. Naturforsch. A. 1983, 38, 896.
- N. L. Arthur, P. Potzinger, B. Reimann, H. P. Steenbergen, J. Chem. Soc. Faraday Trans. II, **1989,** 85, 1447.
- 6. E. R. Austin, F. W. Lampe, J. Phys. Chem., 1977, 81, 1134.
- R. Steckler, B. C. Garrett, A. D. Isaacson, D. G. Truhlar, et al. POLYRATE7.8 program,
- D.G.Truhlar, A.D.Isaacson, B.C.Garrett, In"Theory of Chemical Reaction Dynamics", (Ed.M.Baer), CRC Press, Boca Raton, FL 1985, p 65.
- V. S. Melissas, D. G. Truhlar, J. Phys. Chem., 1993, 99, 15.
- 10. J. Almlof, K. Faegri Jr., *Theor. Chim. Acta*, **1986**, 69, 438.

Received 6 April 1999 Revised 26 November 1999